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This study analyzes a waveguide consisting of two parallel fluid-
filled chambers connected by a narrow slit that is spanned by two
coupled elastic beams. A stiffness gradient exists in the longitu-
dinal direction. This simple linear system, which contains no lumped
mass, is shown to act as a spectral analyzer. Fluid waves traveling in
the waveguide exhibit a distinct amplitude peak at a longitudinal
location that varies systematically with frequency. The peaking is
not based on resonance, but entirely on wave dispersion. When
entering its peak region, the wave undergoes a sharp deceleration
associated with a transition in which two propagation modes
exchange roles. It is proposed that this mode shape swapping
underlies the frequency analysis of the mammalian cochlea.

avoided crossing | tonotopy | group velocity | hydrodynamics |
auditory filter

In this study I explore the following question: How can a
waveguide act as a spectral analyzer which spatially separates

the frequency components of a wideband input? This question
has been debated since Bekesy’s observation of traveling waves
in the mammalian inner ear (1), the cochlea. On their way from
base to apex, these fluid waves exhibit an amplitude peak at a
frequency-dependent place. The peaking underlies our ability to
identify and separate sounds.
The most common explanation of cochlear frequency selec-

tivity invokes local resonances coupled to the traveling wave (2).
This approach requires a form of mass loading of the cochlear
partition in addition to the mass loading by the surrounding
fluid. The amount of mass needed in such models has been
criticized for being unrealistically large given the cochlear anat-
omy (3). Even when sidestepping these objections, it has proved
difficult to formulate models that reproduce both the amplitude
and phase data of sensitive cochleae. On their way to the am-
plitude peak, cochlear traveling waves accumulate only 1–2 cycles
(4, 5). Resonance-based models that produce sharp amplitude
peaking tend to systematically overestimate the phase accumu-
lation (6, 7). The resonance point acts as a cutoff, and a hypothet-
ical frictionless wave would accumulate an infinite number of
cycles when approaching it (8). Although damping will temper this
singular behavior, too much of it also spoils the amplitude peaking.
In active cochlear models (9, 10) this problem is circumvented

by postulating a limited region of mechanical amplification
(“negative damping”) basal to the resonance point. This creates a
sufficiently sharp amplitude peak at a more basal location (safely
away from the singularity), while still allowing ordinary damping to
temper the phase accumulation near the resonance point (7).
The present study explores an alternative approach which

rejects resonance as the mechanism producing the peaking. In
this scenario the peaking of traveling waves is created by a form
of wave dispersion that is characterized by a steep deceleration
of the energy transport. The deceleration produces a densifi-
cation (focusing) of the energy that creates the peaking. This
approach was motivated by neural data revealing a steep de-
celeration of cochlear waves near their peak (5, 11). Rather
than building an elaborate biophysical model, the aim was to

find the simplest possible fluid waveguide exhibiting steep
deceleration and peaking.

Model Overview
A cross-section of the model (Fig. 1A) shows its basic features.
Its parameters are motivated by data from the gerbil cochlea;
a detailed description is given in SI Text. Two fluid-filled half-
cylinders are enclosed in rigid walls. The chambers are con-
nected by a narrow slit spanned by two parallel elastic beams
(“membranes”) B1 and B2. The beams are massless and have
comparable stiffness. The motion of the elastic beams is de-
scribed by a simple unimodal deformation. The distance between
the beams is comparable to their width. The space between the
beams is filled with fluid. There is an elastic coupling between
the beams (Fig. 1B). All fluid in the model is incompressible. The
geometry is constant along the longitudinal axis (the propagation
direction, perpendicular to the plane of Fig. 1A), but all stiffness
values (both of the individual beams and their coupling) jointly
vary according to an exponential map. This stiffness gradient is
chosen to be sufficiently slow to justify the Wentzel–Kramers–
Brillouin (WKB) approximation (12). In the analysis of disper-
sion damping will be ignored at first; light damping, dominated
by out-of-phase beam motion, is introduced later.

Analysis of the Behavior
The behavior of the model will be analyzed by introducing its
features one by one. Detailed derivations are provided in SI Text.
In the absence of a stiffness gradient, and with only one chamber
filled with fluid, the reduced waveguide supports 3D fluid waves
(13) characterized by a fanning pattern of fluid motion (Fig. S1).
The wavelength dependence of the effective mass mch of the
fluid in the chamber (Fig. 2) gives rise to strongly dispersive

Significance

This work describes a simple waveguide that not only carries
fluid waves, but also performs a spectral analysis. When driven
by a complex input that contains several frequency compo-
nents, it will spatially separate those components, in analogy
to the separation of white light by a prism. The frequency
tuning of the waveguide is not based on resonance, but on
wave dispersion: Each wave has its own region in which it
undergoes a steep deceleration, causing it to focus its energy
and deliver it. This method of spectral analysis has not been
described before. The waveguide bears a striking resemblance
to the inner ear of mammals, both in terms of structure
and behavior.

Author contributions: M.v.d.H. designed research, performed research, analyzed data,
and wrote the paper.

The author declares no conflict of interest.

*This Direct Submission article had a Prearranged Editor.

Freely available online through the PNAS open access option.
1Email: m[dot]vanderheyden[at]erasmusmc[dot]nl.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1412412111/-/DCSupplemental.

14548–14552 | PNAS | October 7, 2014 | vol. 111 | no. 40 www.pnas.org/cgi/doi/10.1073/pnas.1412412111

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
10

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1412412111/-/DCSupplemental/pnas.201412412SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1412412111/-/DCSupplemental/pnas.201412412SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1412412111/-/DCSupplemental/pnas.201412412SI.pdf?targetid=nameddest=SF1
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1412412111&domain=pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1412412111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1412412111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1412412111


www.manaraa.com

effects: the phase velocity c varies considerably with wavelength,
and U/c (the ratio of group velocity U to phase velocity c)
assumes values as low as 0.16 (Fig. S2). These dispersion prop-
erties are analyzed further on.
Next consider the case in which both chambers and the slit

between the beams are filled with fluid, but the beams are not yet
elastically coupled. The system now has two degrees of freedom,
represented by the vector η =(η1,η2)

T, holding η1 and η2, the dis-
placements of the two beams. Its dynamics is described in terms of
the 2 × 2 matrices M and S representing mass and stiffness per
unit length, respectively (14). Because the model has no lumped
mass, M consists exclusively of contributions from the fluid:

M
�
k
�
=
�
mch +mtr −mcpl
−mcpl mch +mtr

�
; [1]

with k the wavenumber, mch the effective mass of the fluid in
each chamber, mtr the effective mass of the fluid trapped be-
tween the beams, and mcpl the mutual coupling between the
beams mediated by the trapped fluid. Each of these effective
fluid masses depends on k. The functions mch(k), mtr(k), and
mcpl(k) were calculated by numerically solving the Laplace equa-
tion for the velocity potential describing the irrotational fluid
motion (Eqs. S8 and S16). The result is shown in Fig. 2. For
k < 0.2 cycle per mm, the wavelength λ = 1/k is large compared
with the dimensions of the model, and the waves are shallow; the
direction of the fluid motion is predominantly longitudinal. In
this range, all masses are proportional to 1/k2, leading to a con-
stant phase velocity (no dispersion). For k > 0.2 cycle per mm,
the penetration depth of the fluid motion (15), which equals
λ/2π, becomes comparable to the radius of the chambers. This
is the fanning-wave range (Fig. S2): the 3D wave motion in the
chambers causes a much shallower dependence of mch on k than
the 1/k2 behavior for small k (13). For k > 2 cycles per mm, the
penetration depth becomes smaller than the distance between
the elastic beams, and the coupling term mcpl rapidly declines
with increasing k. In this range, the two beams are virtually
uncoupled, and fluid motion on either side of a beam is confined
to small regions remote from any rigid boundaries, leading to
a convergence of mch and mtr.

The dispersion behavior is determined by the effective fluid
masses. The dispersion relation is (14)

det
�
ω2M

�
k
�
− S

�
= 0; [2]

where ω is the angular frequency of the wave. In the absence of
elastic coupling between the beams, S is diagonal, leading to the
two modes shown in the dispersion diagram of Fig. 3A. Because
the stiffness of the two beams is comparable (s1/s2 = 3), the two
wave modes correspond to a parallel motion of the beams
(P mode; gray line in Fig. 3A) and an antiparallel motion (A mode;
black line in Fig. 3A), respectively. In the P mode, the mass is
dominated by the fluid in the chambers; in the A mode, the mass
is dominated by the trapped fluid, which is squirted in the lon-
gitudinal direction. The fanning P waves are faster than the
squirting A waves.

Mode Shape Swapping and Deceleration
Next introduce the elastic coupling between the beams, which
causes S to become

S=
�
s1 + s12 −s12
−s12 s2 + s12

�
; [3]

with s12 the elastic coupling (Eq. S18). This hardly affects the
P mode, in which the beams move together, but it increases the
effective stiffness of the A mode, in which the beams move
against each other. Propagation in the A mode will thus become
faster, and its dispersion curve steeper. For sufficiently large s12,
then, the dispersion curve of the A mode may be expected to
intersect that of the P mode, as depicted in Fig. 3B. This expec-
tation is not fulfilled. In fact, solving Eq. 2 leads to the situation
depicted in Fig. 3C. The curves show a behavior known as
avoided crossing, which was first observed and explained in the
context of quantum-mechanical eigenvalue problems (16). The
dispersion curves act as if they repel each other, and switch roles
at the expected intersection point. As a result, neither mode is
purely parallel or antiparallel. At the transition point, the A
mode turns into a P mode and vice versa. This transition will
be referred to as mode shape swapping, and the frequency at
which it occurs will be called the transition frequency. The two

Fig. 1. Layout of the double-beam waveguide. (A) Cross-section showing
the half-cylindrical, fluid-filled chambers, the elastic beams B1 and B2 (green),
and the fluid trapped in the slit between them. Fluid: light blue. Wave prop-
agation is perpendicular to the plane of view. (B) Zoom-in showing the slit
between the chambers and elastic coupling (red) between the beams.

Fig. 2. Effective fluid masses as a function of wavenumber. The three con-
tributions to themassmatrix (see text following Eq. 1) are the effective fluidmass
ofthehalf-cylindricalchambers(mch),thatofthefluidtrappedbetweenthebeams
(mtr), and the coupling between the beamsmediated by the trapped fluid (mcpl).
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modes depicted in Fig. 3C will be called the AP and PA modes.
The term “mode shape” refers to a particular combination of
beam motion; the term “mode,” to a set of mode shapes con-
nected by a single dispersion curve.
A key consequence of mode shape swapping is the rapid

change in the slopes of the dispersion curves, i.e., a jump-like
change of the group velocity U = dω/dk. This transition is il-
lustrated by plotting group velocity versus frequency for the
AP and PA modes. The AP mode (black line in Fig. 4) shows
a sharp transition. Below the transition frequency (12 kHz in
Fig. 4), its group velocity is nearly constant at ∼15 m/s. Within
a few kHz, group velocity drops to ∼1 m/s. Further increments
of the frequency produce relatively little additional change in
the group velocity.

Spatial Response Patterns
We next introduce the longitudinal stiffness gradient and analyze
how it affects wave propagation. The variation of S(x) with
longitudinal location x has two consequences. First, it causes the
wavenumbers kAP and kPA of the two eigenmodes to vary with
position in addition to their frequency dependence. Second, it
makes the eigenmodes themselves x-dependent, particularly in
the transition region where the modes exchange shapes. This
raises the possibility of mode conversion, the coupling of one

mode into another during propagation (17). Let Θ(ω,x) be the
2 × 2 matrix that decomposes the displacement vector η into
local eigenmodes. Then the x dependence of η can be expressed
in the known propagation of the eigenmodes, leading to

∂η
�
∂x=Θ−1�iK +G

�
Θη: [4]

Here K is the diagonal wavenumber matrix that describes the
phase accumulation of the two eigenmodes, and G is the diago-
nal forward gain matrix that describes their local amplitude var-
iation dictated by the gradients in stiffness and group velocity.
G ensures energy conservation in the WKB approximation (18).
Θ, K, and G depend on x. In the transition region, where the group
velocity of the AP mode plummets, the element of G corre-
sponding to the AP mode shows a sharp peak (Fig. 5A). In
physical terms, this amplitude boost is a consequence of the
energy focusing (densification) following the steep deceleration
of energy transport. Because only the AP mode has this sharp
local boost, the steepness of amplitude peaking in a solution of
Eq. 4 critically depends on the initial condition at x = 0. Sharp
peaking requires the wave to be predominantly in the AP mode
when entering its transition region. Owing to potential mode
conversion, this requirement is not fully equivalent to the wave
starting off (at x = 0) in the AP mode (Fig. S3).
The final model ingredient to be introduced is damping. Light

damping causes the wavenumber k to pick up a small imaginary
part that creates an exponential decay of the wave amplitude.
Importantly, the spatial rate of decay is inversely proportional to
group velocity (Eq. S23). Consequently, the waves are hardly
affected by damping before they decelerate, whereas they decay
over a relatively short distance after decelerating. The steepness
of the deceleration contributes to creating a well-localized am-
plitude peak. If the deceleration were too gradual, the amplitude
boost created by the deceleration would not only be shallower,
but also counteracted by the increased susceptibility to damping
following the deceleration.
The response of the model to sinusoidal stimulation at x = 0

(Fig. 5 B and C) exhibits mode shape swapping and subsequent
amplitude peaking at a frequency-dependent location. The three
sinusoids were presented in the same mode shape at x = 0. Thus,
their spatially separated peaks show that the model waveguide
depicted in Fig. 1 acts as a spectral analyzer. The peak widths of
Fig. 5B correspond with a quality factor Q10dB of 3, matching the
tuning of low-intensity basilar-membrane data in sensitive gerbil
cochleae (19, 20). Importantly, the model does not owe its fre-
quency selectivity to resonance, because its beams are massless.
It has no cutoff or transition to evanescent waves, phenomena
that are inevitable in resonance-based models (8). In contrast,
the waves shown in Fig. 5 propagate well beyond their peak, even

Fig. 3. Dispersion diagrams of the two waveguide modes. (A) Without
elastic coupling between the beams. P and A modes (see text following Eq.
3) indicated. (B) Hypothetical dispersion diagram after introducing the
elastic coupling, which selectively speeds up the A mode. The A and P modes
cross. Stiffness ratio s1:s2:s12 = 1:3:14. (C) The actual dispersion diagram of
the system with coupled beams, obtained by solving Eq. 2, shows avoided
crossing, creating the AP and PA modes as indicated.

Fig. 4. Group velocity versus frequency for the AP and PA modes of Fig. 3C.
The group velocity of the AP mode, but not the PA mode, undergoes a steep
drop near the transition frequency, 12 kHz.
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though they decay rapidly. Mode conversion has little impact on
the peaking shown in Fig. 5. The AP mode dominates the wave
from its start at x = 0, and this dominance persists throughout
the peak region. Only well beyond the peak does the PA mode
become dominant, putting an end to the steep decay. This is
further analyzed in Fig. S3, where the spatial profiles of Fig. 5 are
decomposed into the contributions from the two modes.

Discussion
The waveguide analyzed in this study is a physical contraption
capable of spectral analysis that, to the best of the author’s
knowledge, is new. It is neither based on resonance, nor on
standing waves, nor on geometric periodicity (as in a grating),
but on an abrupt exchange of shapes between propagating
wave modes. Such mode shape swapping has previously been
described in the context of vibration modes in structural dy-
namics (21) and atomic spectra (16). Surprisingly, it has not

been applied to propagating wave modes, even though the analyses
of vibration modes and propagation modes are mathematically
equivalent. Briefly, the waveguide demonstrates a new physical
effect based on well-known physics.
The geometry depicted in Fig. 1 is not the only realization of

a spectral analyzer based on mode shape swapping. Variations
are possible, as long as the following essentials are included: two
degrees of freedom; a strongly dispersive fanning-wave mode
shape (generalizing the P mode); a squirting mode shape (gen-
eralizing the A mode); internal stiffness speeding up the squirt-
ing mode but not the fanning mode (generalizing the spring in
Fig. 1B); light damping. The crucial contrast between fanning
and squirting waves is that the former conserve the cross-sec-
tional area of the trapped fluid whereas the latter involve a pe-
riodic change of this area. Fig. S4 depicts a number of alternative
waveguide geometries that support these two wave types.
In terms of structural requirements, the fanning mode needs

a narrow elastic structure facing a wide and deep chamber; the
squirting mode needs a narrow tunnel in which fluid is trapped;
the internal stiffness must be associated with deformations of
the tunnel. These three structural properties are present in all
mammalian inner ears (despite strong anatomical variation both
along the cochlear length and across species). The basilar mem-
brane is narrow compared with the scalae on both sides, and the
organ of Corti has a tunnel-like structure supported by a V-shaped
constellation of structurally stiff pillar cells (22). Thus, the basic
requirements for mode shape swapping are in place. Whether it
actually occurs is an empirical question. There is indirect evidence
for multiple cochlear vibration modes (23, 24), but the most direct
test is the in vivo measurement of the internal motion of the organ
of Corti in sensitive cochleae. Mode shape swapping predicts
a drastic change (polarity inversion) in internal motion upon
varying stimulus frequency. Intriguingly, recent in vivo measure-
ments of the internal motion of the mouse organ of Corti (25),
obtained using optical coherence tomography (OCT), do show the
steep polarity inversion predicted by mode shape swapping. The
OCT data in figures 5 and 9 of that study (25) reveal a 180-degree
phase shift in the relative motion of different parts within the
organ of Corti. The steep phase shift occurred within a narrow
range of frequencies and persisted postmortem, indicating that it
reflects a passive mechanical property of the cochlea.
Viewed as a preliminary cochlear model, the waveguide de-

scribed here shares some features with previous models, but
differs from them in essential aspects. In passive resonant models
the deceleration of energy transport contributes to amplitude
peaking (8), but it is realized by resonance. This leads to a cutoff
and overestimation of phase accumulation (6, 7). In contrast,
resonance plays no role in the current work. The wave deceler-
ates, but not indefinitely: it switches gears only once (Fig. 4),
keeping the phase accumulation within realistic bounds. Active
cochlear models (9, 10) postulate motile processes that inject
mechanical energy into the wave. In contrast, the current model
creates amplitude peaking by entirely passive means. Curiously,
mode shape swapping appears to mimic the behavior of active
models. Over a narrow spatial region the wave amplitude is
boosted, and this region of forward gain (Fig. 5A) shifts with
frequency. The amplitude boost, however, is not created by
motile activity, but by the rapid transfer of power from a stiff and
inert vibration mode into a compliant and light one. However, an
observer watching one beam, but unaware of the other, would be
tempted to attribute the sudden boost to a local power source.
Finally, previous dual-compartment (“sandwich”) models of the
cochlea share the use of two degrees of freedom with the current
work, but differ from it in their reliance on resonance (14, 26)
and motility (26) to explain frequency selectivity.
The mode shape swapping does not require any mechanical

nonlinearity and is exhaustively described by linear equations.
The linearity of the model suggests its use in explaining the

Fig. 5. Spectral analysis by the double-beam waveguide. (A) Local ampli-
tude gain from gradients in group velocity and stiffness for the two modes
at 24 kHz. (B) Solid lines: spatial profiles of displacement amplitude of beam
B1 in response to equal-amplitude sinusoids at x = 0. Frequencies: 17 kHz
(blue), 24 kHz (green), 33 kHz (red). (C) Companion phase profiles. The stars
mark the location of the peak of the corresponding amplitude profile.
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subnanometer cochlear responses to low-intensity sounds. In
its current linear form the model cannot describe the multi-
band dynamic range compression performed by the living
cochlea. That would require the incorporation of automatic gain
control, for instance by adjusting the amount of local damping to
the local displacement amplitude (27, 28) or through directing
high-intensity waves into the nonpeaking mode. Both mecha-
nisms require an intensity-dependent control of the local me-
chanical properties of the organ of Corti. Outer hair cells are the
obvious candidates for performing this task: they are sensors
and actuators at the same time (29), and the attachment of their
cell bodies and hair bundles allows them to control mechanical

properties of surrounding structures. The refinement of OCT
techniques will undoubtedly deepen the knowledge of inner ear
vibrations in unprecedented ways. The waveguide model and the
concept of mode shape swapping described in the current study
provide a clear and straightforward theoretic framework that can
guide the interpretation of such data. The author expects that
these new data and ideas will help us to understand the basis of
cochlear frequency selectivity and gain control in the near future.
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